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INTRODUCT ION

This study repr2sents the work performed during the third year of a
multi-year Shelter Ventilation Analysis Program. The specific objective
of the present study was to determine a correlation between the dependent
variable - the shelter ventilation rate - and the independent variables
influencing it. Independent variables analyzed in this study include,
total area of wall openings, area ratio of windward to leeward wall openings,
speed of approach wind and relative wind angle.

The approach taken to achieve the stated objective consisted of several
series of wind tunnel tests using a rscalrer mpdel of the fallout shelter
studied in the first year program. The total area of waﬂi c;pevnrings and
their distribution over the walls were varied and the model ventilation rates
were measured over a wide range of approach wind speeds and relative wind
angles. Ventilation rates for the full-scale shelter were then projected

from the model results using scaling laws.

METHOD AND PROCEDURE OF TESTING

Fallout shelters with five distinct opening comfigurations were modeled
in this study. A1l shelters had the same length (48 feet), width (32 feet)
and height (12 feet) as the one studied in the first year program. However,
the total area of-the-openings varied {rom 2.5% to 3.44% of the exterior
wall surface. Opening distribution patterns were also varied.

Since all five shelters had the same overall dimensions, the different

opening configurations were obtained from the same basic model by using
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close-fitting aluminum wedges and plates to block off, open up or modify
one or more of the openings. Figure 1 shows the basic mode! with the
aluminum wedges partially drawn out. Figures 2-6 show the test models with
the roofs removed.

After establishing the desired velocity profile for the approach air
stream, the following four series of tests were performed to determine model
ventilation rates at different values of the approach air stream velocity.

In the first series of tests, air volume flow rates through calibration
tubes attached to the leeward operings of the models ware correlated with
measurements of axial velocities at a section 15 diameters downstream of
the leading edge of these tubes. This was done by forcing metered volume
flow rates of air through one of the wall openings of the shelter and
simultaneously recording anemometer readings of air flow velocities in the
tube. In the second series of tests, actual values of ventilation rates
through the model with tubes attached to the leeward openings were determined
for different velocities of the apy.~oach air stream. Test Series 3 and 4
were performed to determine the "tube correction factor" which is the
factor by which the ventilation rates with the tubes (obtained from Test
Serdes 2) should be multinlied to get actual values of model ventilation
rates. Values, of this factor for different approach wind velocities were
determined by taking ratios of average flow velocities across the main wind-
ward opening obtained without tubes at the leeward npenings to those obtained
when tubes were attached to the leeward openings. Average flow velocities
through the main windward operings were obtained by determining the average

velocities of tracer bubbles passino through them using motion photography.
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Figure 1

Figure 3

Figure 5
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SHELTER MODEL WITH WEDGES
PARTIALLY PULLgD ouT

MODEL CONFIGURATION - B

MODEL CONFIGURATION - D

Figure 2 MODEL CONFIGURATION - A

Figure 4 MODEL CONFIGURATION - C

Figure 6 MODEL CONFIGURATION - E
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RESULTS OF MODEL TESTS

Based on the model test data, the following linear relation was
generated between the dependent variable of shelter ventilation rate and
the independent variables of approach wind velocity, windward opening area
and a factor " whose value depends on the ratio of opening areas on the

leeward and the windward sides.

Q = 0.31xA xV xF (Eqn. 1)

where Q is the vertilation rate, CFM.

Aw is the area of openings on the windward sides, square feet.

(Openings on walls parallel to the direction of the approach air

stream should be taken as Tleeward openings.)

V, 1s the speed of the approach air stream (FPM) corresponding
to the meteorological wind speed which is normally measured at
30 feet above the ground.
F is a Flow Correction Factor that gives the increment or
decrement in flow due to unequal areas of the windward and
leeward openings. Values of F are obtained from Figure 7.
(This data may not be extrapolated.)

Equation (1) has the same form as that given in the ASHRAE Handbook of
Fundamentals for estimating wind ventilation in general type buildings.
However, there are considerable differences in the ventilation rates pre-
dicted by these two equations, especially for perpendicular winds. Equation

(1) is also free from the ambiguities that arise during the application

of the ASHRAE equation.
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Models with five different opening configurations were used in the
present tests. Total opening areas of these models varied from 2.5% to 3.44%
of wall surface area (3.13% to 4.3% of floor area). Projected results show
that, for all five configurations, ventilation rates of 1 CFM per square foot
of floor area can be achieved at approach wind cpeeds as low as 3.5 mph.

Test results also showed that the highest values of shelter ventilation
rate per unit area of wall openings are achieved when the ratio of windward
to total opening area lies between 0.3 and 0.6 (Figures 8-11). If this ratio
of opening areas can be met at all wind directions (by proper distribution
of openings over the walls), it follows that the shelter will have the highest

ventilation rates per unit area of wall openings for all wind directions.
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PREFACE

GARD, a Division of Chamberlain Manufacturing Corporation, has prepared
this report for the Federal Emergency Management Agency (FEMA). Mr. Donald
Bettge of FEMA served as Project Officer during the entire program.

This report details the work completed during the third year (Option 2)
of a multiyear Shelter Ventilation Analysis Program. During the third year, an
extensive experimental study was carried out to determine a correlation between
the dependent variable, the shelter ventilation rate, and the irdependent
variables influencing it. The independent variables analyzed include:

i) Total area of wall openings

i) Area ratio of leeward to windward wall openings
i) Speed of approach wind and the
v

(
i
1
iv) Relative wind angle.

{
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Dr. S.F. Fields
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GARD wishes to thank Mr. Bettge and FEMA for giving the opportunity to
undertake this study.
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ABSTRACT

Wind tunnel tests were carried out using models of fallout shelters to
determine correlations between snelter ventilation rate, area and distribution
of wall openings, wind speed and its direction relative to the orientation of
the shelter. Models of bermed shelters with five different opening
configurations were used in these tests. A simple correlation was formulated
between the shelter ventilation rate, the total area of windward openings, the
ratio of leeward to windward opening areas and the velocity of the approach

wind.
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Section 1
INTRODUCTION

1.1 Background
A multi-year Shelter Ventilation Analysis Program i{s currently in

progruss at GARD. The goal of this program 1is to analyze wind-induced
ventilation 1in both below-ground and abeve-ground shelters under different wind
conditions, to suggest guidelines for shelter design and to recommend expedient
methods of enhancing ventilation in those shelters. The analysis is performed
by conducting scale model tests in a low speed wind tunnel. This report
describes the results of-the third year's (Option 2) effort.

During the first year of this program, the baseline w1nd;1nduced
ventilation characteristics (afr volume flow rate and distribution) for a
single-room, upgraded, above-ground shelter were studied ond established. Some
preliminary tests were also conducted to evaluate the effectiveness of Flow
Enhancement Devices (FEDs) placed near the entrance and exit openings of

below-ground blast shelters in improving wind-induced ventilation. These tests

strongly suggested the possibility of achieving acceptable 1levels of'

ventilation 1in below-ground shelters even at moderate wind speeds with properiy
designed FEDs. Results of the first year's work under the program have been
published in the form of a project report (Ref. 1).

The second year of the program (Option 1) focused on quantitatively
estimating the ventilation enhancement capabilities of innovatively designed
FEDs applied to a 'below-ground blast shelter. Also as part of this study, a
limited number of tests were conducted to estimate the influence of a

neighboring upstream flow obstruction (namely, a small building) on the

1-1
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ventilation throughput of the shelter. Results of the Option 1 study have been
published in the form of a project report dated December, 1983 (Ref. 2).

Under Option 2 (the third year of the program), an extensive series of
model tests were conducted to obtain correlations between the total area of
exterior wall openings and the ventilatibn throughput of a bermed, above-ground
fallout skhelter and to estimate the influence of such important geometric
variables as the ratio. of the windward opening area to the leeward opening
area, In these tests, the ratio of wall opening area to wall surface area was
varied from about 2.5% to 3.5%. The distribution of door and window openings
was also varied to generatc five different shelter configurations. Model tests
were conducted over the entire range of relative wind angles (0° to 360°) and
the free stream air speed in the tunnel was varied from about 4 fps to 20 fps.
1.2 Objectives

The overall goal of ¢this study program 1is to obtain a clear
understanding of the complex problem of ventilation in above-ground fallout
shelters with and without internal partitions and in below-ground keyworker
shelters so that the ventilation throughput and the air distribution ran be
predicted and practicai recommendations made to improve them. The specific
objectives of the present study (Option 2) are:

¢ to determine a correlation betueeh the total area of exterior wall

openings and ventilation throughput in a bermed, above-ground
fallout shelter

e to estimate the influence of the ratio of opening area on the

windward side to that on the leeward side on shelter ventilation

throughput.

GARD
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1.3 Review of Literature

Extensive experimental and analytical studies of natural ventilation in
full-scale above-ground fallout shelters were conducted by the Defense Civil
Preparedness Agency (DCPA) in the 1960s. These studies utilized a relationship
similar to the one given in the 1977 ASHRAE Handbook of Fundamentals (Ref. 3,
Chapter 21) for estimating wind-induced ventilation in buildings:

Q = EAV
where Q = Air volume flow rate (cfm)
E = Effectiveness factor
A = Free area of inlets or outlets whichever is smaller
(square feet)

Y

Wind speed (feet per minute)

The value of the effectiveness factor varies from 0.5 to 0.6 for perpendicular
winds and from 0.25 to 0.35 for winds at other angles. When the inlet and
outlet areas are not equal, the flow increases in a nonlinear fashion with the
area ratio (Figure 12, Chapter 21 of Ref. 3). The ASHRAE model is very crude
and gives results that differ considerab’y from experimental values as
indicated by the tests on full-scale buildings conducted by DCPA (Ref. 4-7)

and the wind tunnel tests on scale models of fallout shelters conducted for the
Federal Emergency Management Agency (Ref. 1). At the present time, established
data are not available to predict quantitatively the influence of the earth
berms on pressure distributions 1in the vicinity of the wzll openings or the

resulting ventilation rates through them.

1-3
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1.4  Method of Approach
The approach taken to achieve the stated objectives consisted of several

series of wind tunnel tests using a scale model of the faliout shelter studied
in the basic program. The total area of wall openings and their distribution
over the walls were varied and the model ventilation rates were measured over a
wide range of approach wind speeds and relative wind angles. (Details of the
experiments are described in Section 2.) Ventilation rates for the full-scale

shelter were then projected from the model results using scaling laws.
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Section 2
MODEL TESTING PROCEDURES

Fallout shelters with five distinct opening configurations were modeled
in this study. All shelters had the same length (48 feet), width (32 feet) and
height (12 feet) as the one studied in the first year program. However, the
total area of the openings varied from 2.5% to 3.44% of the exterior wali
surface. Opening disfribution patterns were also varied. Figures 2.1-2.5 show
the geometric details of each shelter configuration tested. For convenience,
the shelters are labelled A through E as indicated.

2.1 Model Fabrication

Since all five shelters nad the same overall dimensions, the different
. opening configurations were obtained from the same basic model by using
close-fitting aluminum wedges and plates to block off, open up or modify one or
more of the openings. Figures 2.6 and 2.7 show the basic model and the
aluminum wedges. The length scale used was 1:36 (model:full-écale). Walls and
earth berms of the model were fabricated from 3/16 inch thick aluminum plates
and <tempered glass sheets. The roof was made of 1/4 inch thick aluminum
plate. A1l the plates and the wedges were machined to close tolerances to
minimize errors due to air leakage. A 1/32 inch thick clear Plexiglass sheet,
screwed to the bottom of the frame served as the shelter floor. Lines parallel
to the walls were scribed on the Plexiglass sheet 3/16 inch apart on either
side of each wall opening to serve as distance markers.

Six, 300 watt photographic 1ights were encased inside the simulated
earth berms to illuminate the interior of the shelter model. The intensity of

these 11ights could be controlled through a voltage regulator. These lights

2-1
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Figure 2.2  SHELTER CONFIGURATION - B
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provided sufficient illumination to photograph the tracer bubt es and the
scribe 1ines on the Plexiglass sheet. Figures 2.8-2.12 show the interior of
the shelter model (roof removed).
2.2 Test Method

The method of testing used in this study was similar to the one used in
Reference 2. First, a set of preliminary tests were made to calibrate the
tunnel as described in Reference 1. These tests established a velocity'prof11e
in the tunnel's boundary layer that conformed to a power law distribution given
by VN, = ()t
heights of Yl and Y2 respectively from the tunnel's f1oor*. This

where V1 and V2 are the velocities at

distribution was valid up to a height of approximately 18 inches from the
tunnel's floor.

After establishing the desired velocity profile for the approach air
stream, the following four test series were performed to determine model
ventilation rates at each value of the approach air stream velocity:

1) Test Series 1 - Amemometer calibration for volume flow rate,

2) Test Series 2 - Determination of air flow rates with tubes at the

| leeward openings,

3) Test Series 3 - Determination of average flow velocities through the

mafn windward openings with tubes at leeward

openings,

*The exponent 1/3.35 corresponds to those recommended for wind velocity
profiles in suburbs of cities (Ref. 8).
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4) Test Series 4 - Determiration of average flow velocities through the
main windward opening without tubes at leeward
openings.

In the first series of tests, air volume flow rates through calibration
tubes attached to 1leeward openings of the models were correlated with
measurements of axial velocities at a section 15 diameters downstream of the
leading edge of these tubes. This was done by forcing metered volume flow
rates of air through one of the wall openings of the shelter and simultaneously
recording anemometer readings of air flow velocities 1in the tube. In the
second series of tests, actual values of ventilation rates through the model
with tubes attached to the 1leeward openings were determined for different
velocities of the approach air stream. Test Series 3 and 4 were performed to
determine the “tube correction factor" which is defined as the factor by which
the ventilation rates with the tubes (obtained from Test Series 2) should be
multiplied to get actual values of model ventilation rates.

2.2.1 Test Series 1 - Anemometer Calibration for Volume Flow Rate

The object of these tests was to establish a correlation between the
actual air volume flow rates through the shelter model and the axial velocity
measurements of a Datamatrics hot-wire anemometer located at the exit planes
of calibration tubes 1leading from the leeward openings. Figures 2.13 shows a
schematic of the calibration test setup. The outer diameter of the calibration
tube was 1 inch and the inner diameter was 7/8 inch. The tube had a length of
14 inches. The leading edge of the tube was pushed through a leeward wall
opening of the shelter and through a one inch circular hole in a thin metal
plate that was taped to the inside surface of the wall. Silicone rubber

sealant was applied to prevent air leaks around the calibration tube and the
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opening in the plate. The anemometer probe was positioned at the rear end of
the calibration tube with 1its sensor at the tube axis. A short piece of
extension tube with a slot to permit passage of the anemometer probe was
attached to the rear end of the calibration tube as shown. All other wall
openings except one on the windward side were sealed tight. A flexible air
intake tube was attached to this opening and the gaps around the tube and
opening sealed with Silicone rubber ;ealant. »

Air from a compressed air tank was admitted into the model at flow rates
ranging from 0.1 c¢fm to 1.5 cfm and the corresponding readings of the
anemometer were recorded. The actual volume flow rates were given by the gas
flow meter which itself was calibrated by a separate volume flow displacement
test. Next, the test was repeated for wind tunnel free stream speeds of 5 fps
and 15 fps. Following this, the turn-table was rotated to set another value of

approach wind angle (8) and the tests repeated at the same two free stream

speeds. Calibration tests were performed at relative wind angles of 0°, 30°

and 45° . It was observed that the correlation between the actual air volume
flow rate through the model and the anemometer reading was not significantly
affected by the speed and direction of the approach air stream in the range
tested. The correlation is given in Figure 2.14.

Additional calibration tubes were attached to the remaining leeward
openings and the calibration tests repeated. Anemometer readings for each of
the leeward tubes were recorded for different air supply rates through the
windward intake tube. It was established that air volume flow rates through
the model could be obtained as the sum of the flow rates through the individual
calibration tubes which 1in turn were obtained from the respective anemometer

readings and the correlation curve of Figure 2.14.
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2.2.2 Test Series 2 - Determination of Air Volume Flow Rates With

Tubes at Leeward Openings

In this series of tests, actual air volume flow rates through the
shelter models with calibration tubes attached to the leeward openings were
determined for various approach wind speeds and relative wind angles. Values
of the air volune flow rates were obtained from measurement of axial velocities
in each of the leeward tubes and the calibration curve of Figure 2.14.
Approach wind speeds (Vm) in the tunne]* were varied from 3.5 fps to 13.75
fps. The direction of the approach stream relative to the main axis of the
shelter (defined as the relative wind angle 8, Figure 2.15), was varied over
the full range of 0° to 360°. Models A and D are symmetric with respect to
their <{ransverse axes. With these models, tests were made for relative wind
angles of 0° through 180° . Model B is symmetric with respect to both the
transverse and the longitudinal axes. For this model, the relative wind angle
was varied only from 0° to 90°. Models C and E are not symmetric with respect
to either the transverse or the longitudinal axis. Tests with these models
were carried out over the entire range of 0° to 360°. In all, 116 tests were
performed in Test Series 2. A typical test set-up is shouwn in Figure 2.16.

2.2.3 Test Series 3 - Determination of Average Bubble Yelocity With

Tubes at Leeward Openings

The object of the tests in Test Series 3 and 4 were to obtain values of

the tube correction factor as a function of the approach wind condition. The

*

Approach wind speeds in this study were measured at a height of 10 inches
above the tunnel floor. This corresponds to wind speeds at a full-scale height
of 30 feet at which metereological wind speeds are normally reported.
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tube correction factor 1is a measure of the reduction in the model ventilation
rate due to the presence of the calibration tubes at the leeward openings. It
was calculated as the ratio of the average flow velocity at the main windward
opening obtained without tubes at the leeward openings to that obtained when
tubes were attached to the leeward openings. Average flow velocities through
the main windward openings were obtained by determining the average velocities
of tracer bubbles passing through them as described in the following pages.

Test Series 3 consisted of 58 tests 1in which average velocities of
tracer bubbles passing through the main windward opening were determined for
various speeds of the approach air stream and the relative wind angle 8.
Figure 2.17 shows a photograph of a typical setup for recording bubble flow
tracers entering the modei. Calibration tubes were attached to all the leeward
'Openings as described earlier. Tracer bubbles from the bubble generator (Ref.
1) were released at approximately 10 inches upstream of the model so as to get
the desired level of bubble population entering the model. The 300 watt 1ights
placed inside the shelter berms were turned on and their intensity adjusted to
the desired level. Only those 1ights that were focused on the scribe lines at
the windward openings were switched on. An additional 300 watt 1ight was
placed approximately 2 feet upstream of the model to shine on to the scribe
lines upstream of the windward opening. The movie camera was focused on to the
image of the windward wall opening reflected from the mirror placed below the
wind tunnel. This mirrow was placed at an angle of 45° to the floor. It
provided a convenient means’of observing and recording flow patterns inside the

shelter model.
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For each value of the relative wind angle, tracer bubble flow was
recorded for two values of the approach wind speed (V. equal to 8 FPS and 12
FPS). The turn-table was then rotated to set another value of the relative
wind angle. The new leeward openings were identified and calibration tubes
were attached to them. Openings in walls which were parallel to the plane of
the approach air stream (longitudinal axis of the tunnel) were identified as
leeward openings. Net flow through these openings was always found to be
outwards. The entire filming was done at a camera speed of 120 frames per
second. The distance between adjacent scribe 1ines was 3/16 inch, also the
thickness of the walls. The average velocity of a bubble normal to the plane
of the wall opening was calculated as:

Distance moved across the
Bubble velocity, Vb (FPS) = openings (inches) / 12 inches/foot

Number of frames to move through
the distance / 120 frames/second

The air flow velocity through the opening was taken as equal to the average
velocity of 25 to 30 bubbles in each case.
2.2.4 Test Series 4 - Determination of Average Bubble Yelocity Without

Tubes at Leeward Openings

In this series of tests, average values of bubble flow velocities VB
through the main windward opening were determined without attaching calibration
tubes to the leeward openings. The tests were similar to those of the previous
series. With one of the shelter models (Model D), tests were made at two
different values of approach wind speed (Vm equal to 8 FPS and 12 FPS) for
equal to 0°, 45° and 135° Using values of bubble velocities Vb from Test
. Series 3, values of the tube correction factor VB/Vb for each of the three

relative wind angles were calculated at both approach wind speeds (Vm equal
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to 8 FPS and 12 FPS). It was noted that the tube correction factor depended
strongly on the relative wind angle. However, it was practically independent
of the wind speed. Therefore, the remaining te ts were conducted only at one
value of the approach wind speed (Vm equal to 12 FPS). In all, 32 tests were

performed under this series.
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Section 3
PRESENTATION AND DISCUSSION OF RESULTS

3.1 Results of Model Testing
Air volume flow rates (QT) through the shelter models obtained with

calibration tubes attached to the leeward openings (from Test Series 2) and the
average bubble flow velocities through the main windward operings with and
without calibration tubes at the leeward openings (from Test Series 3 and 4)
are presented in Tables 3.1 - 3.5. These tables also give the tube correction
factors and the model ventilation rates for the various approach wind speeds
and relative wind angles. Based on these results, the following correlation
was obtained between the dependent variable of wodel ventilation rate and the
independent variables of approach wind velocity, windward opening area and a
factor F whose value depends on the ratio of the leeward opening area to the
windward opening area:
Q = 031xA xV xF (Eqn. 1)
where Q is the ventilation rate, CFM.
Aw is the area of openings on the windward sides, square
feet. (Openings on walls parallel to the direction of the
approach air stream should be taken as leeward openings.)
Vo is the speed of the approach air stream (FPM)
corresponding to the meteorological wind speed which is normally

measured at 30 feet above the ground.
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TABLE 3.1
MEASURED VENTILATION RATES - SHELTER MODEL A
8 VM QT Vb VB VB/Vb Q
Relative Approach Ventilation | Air Speed at | Air Speed at Tube Model
Wind Wind Speed Rate with Inlet Opening | Inlet Opening| Correction| Ventilation
Angle (FPM) Tubes in With Tubes Without Factor Rate
(Deg.) Place in Place Tubes (CFM)
(CFM) (FPS) (FPS)
210 0.99 1.28
0 410 2.04 1.29 2.63
600 3.04 3.92
825 4.09 3.75 4.84 5.28
210 0.71 1.03
45 410 1.65 1.45 2.39
600 2.68 3.89
825 3.97 3.21 4.78 5.76
210 0.50 0.56
90 410 1.21 1.11 1.34
600 1.99 2.21
825 2.87 4,90 5.44 3.19
210 0.62 1.01
135 410 1.48 1.63 2.41
600 2.35 3.85
825 3.48 3.03 5.44 5.67
210 0.57 0.62
180 410 1.40 1.08 1.51
600 2.10 2.27
825 3.30 4.64 4.99 3.56
v

B

Q = Q (39

T Vb
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TABLE 3.2 e
MEASURED VENTILATION RATES - SHELTER MODEL 8 K
’
8 Vn Q Y Vg Ya/V Q
Relative Approach Ventilation ; Air Speed at | Air Speed at Tube Model Py
Wind Wind Speed Rate with Inlet Opening| Inlet Opening| Correction | Ventilation S
Angle (FPH) Tubes in With Tubes Without Factor Rate T
(Deg.) Place in Place Tubes (CFM) "
(CFM) (FPS) (FPS)
210 0.99 1.41
0 410 2.04 1.42 2.90 R
600 3.04 4.32 i"““
825 4.09 3.75 5.33 5.81 -
210 0.71 1.07
45 410 1.65 1.50 2.48 A
600 2.68 4.02 SN
825 3.97 3.21 4.82 5.96 ;'“‘““
210 0.50 0.61
600 1.99 2.43 TR
825 2.87 4.90 6.00 3.50 T
L
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TABLE 3.3 i
MEASURED VENTILATION RATES - SHELTER MODEL C '
;.}.,_‘
9 (" QT Vb VB VB/Vb Q °
Relative A:.proach Ventilation | Air Speed at | Air Speed at Tube Model o
Wind Wind Sgeed Rate with Inlet Opening| Inlet Opening| Correction] Ventilation
Angle (FPM Tubes in With Tubes Without Factor Rate
(Deg.) Place in Place Tubes (CFM)
(CFM) (FPS) (FPS)
210 1.13 1.20
0 410 2.10 1.06 2.23
600 3.22 3.41
825 4.51 4.08 4.32 4.78 '
210 0.86 0.97 *
45 410 1.71 - 1.13 1.93 ‘
600 2.74 3.10
825 4.06 3.66 4.12 4.59
210 0.48 0.50 S
90 410 1.39 1.04 1.45 -
600 2.25 2.34 L
825 3.25 5.52 5.74 3.38 R
210 0.81 1.05
135 410 1.72 1.30 2.24 :
) 600 2.75 3.58 s
825 421 4.06 5.25 5.47 "' —
210 0.54 0.58
180 410 1.28 1.07 1.37
600 1.94 2.08
825 2.80 5.60 6.00 3.00
210 0.93 1.00
295 410 2.10 1.07 2.25
600 3.24 3.47 .
825 4.74 5.00 5.33 5.07 -
210 0.48 0.56 ”
270 410 1.31 1.16 1.52 SR
600 2.24 2.60 s .
825 3.22 5.18 5.99 3.74 o
210 0.75 1.18
315 410 1.57 1.49 2.34
600 2.27 3.38
825 3.21 2.92 4.36 4.78
3-4 , ’ .




TABLE 3.4

MEATURED VENTILATION RATES - SHELTER MODEL D

8 L" Q Yy Vg Vg/Vp Q
Relative Approach Ventilation | Air Speed at | Air Speed at Tube Model
Wind Wind Speed Rate with Inlet Qpening| Inlet Opening | Correction{ Ventilation
Angle (FPM) Tubes in with Tubes without Factor Rate
(Deg.) Place in Place Tubes (CEM)

(CFM) (FPS) (FPS)
210 1.20 1.22

0 410 2.31 1.02 2.36

600 3.31 3.38
825 4.95 5.71 5.80 5.05
210 0.99 1.16
4s 410 1.95 1.17 2.28
600 3.19 3.73
825 4.62 3.70 4.34 5.41
210 0.52 0.52
90 410 1.34 1.00 1.34
600 2.11 2.11
825 3.25 5.60 5.60 3.25
210 0.87 1.37
135 410 1.72 1.58 2.72
600 2.54 4.01
825 3.62 4.05 6.39 5.72
210 0.90 1.06
180 410 1.78 1.18 2.10
600 2.57 3.03
825 3.74 4.63 5.44 4.41
3-5
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TABLE 3.5

MEASURED VENTILATION RATES - SHELTER MODEL E

8 VM QT Vb VB VB/Vb Q
Relative Approach Ventilation | Air Speed at | Air Speed at Tube Model
Wind Wind Speed Rate with Inlet Opening| Inlet Opening| Correction| Ventilation
Angle (FPM) Tubes in With Tubes Without Factor Rate
(Deg.) Place in Place Tubes {CFM)

(CFM) (FPS) (FPS)
210 1.26 1.51

0 410 2.49 1.20 2.99

600 3.72 » 4.46

825 5.77 3.83 4.61 6.92

210 1.10 1.10

a5 410 2.36 1.00 2.36

600 3.57 3.57

825 5.23 3.52 3.52 5.23

210 0.60 0.60

90 410 1.55 1.00 1.55

600 2.30 2.30

825 3.64 5.52 5.51 3.64

210 0.87 1.16

135 410 1.92 1.33 2.55
600 2.89 3.84

825 4.39 3.42 4.54 5.84

210 0.93 1.07

180 410 1.90 1.15 2.19
600 3.02 3.47

825 4.25 4.80 5.50 4.89

210 0.87 1.17

225 410 2.06 1.34 2.76
600 3.05 4.09

825 4.28 3.29 4.41 5.74

210 1.07 1.18

315 410 2.22 1.10 2.44
600 3.48 3.83

825 4.83 3.30 3.64 5.31
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F 1s a Flow Correction Factor that gives the increment or
decrement in flow due to unequal areas of the windward and
leeward openings. Values of F may be obtained rrom Figures 3.la
and 3.1b. This data may not be extrapolated.

Table 3.6 shows values of the windward and the Teeward wall opening
areas, values of the fictor F and the ventilation rates for all five models
calculated using Equation (1). Figure 3.2 shows a comparison 6f model
ventilation rates calculated using Equation (1) with the experimental values
given in Tables 3.1 - 3.5. The data puints in Figure 3.2 correspond tc
experimental values of the model ventilation rate for all values of the
relative wind angle.

- Figures 3.3 - 3.6 show the variations in ventilation rate per unit area
of wall openings with the windward opening area expressed as a fraction of the
total opening area. The data points correspond to experimental values of
ventilation rate of all five models at all values of the relative wind angle.

Figures 3.7 - 3.11 show variations in the projected ventilation rates
(using Equation 1) for eack of the five shelter configurations with the
approacn wind speed. The shaded area in each figure shows the range of
variations in ventilation rates due to changes in relative wind angle.

3.2 Technical Disucssion

Equation (1) 1is a simplc, linear relation that enables one to estimate
shelter ventilation rate as a function of the approach wind speed, area of
windward openings anq the ratio of areas of leeward and windward openings.
(For a shelter of given total wall opening area, the ratic of leeward to

windward opening area depends on the relative wind angle.) This equation was
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Figure 3.1
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Ratio QI/QZ

LEGEND

Q1 is the ventilation rate calculated from Equation (1), values from

Table 3.6.

Q2 is the experimental value of ventilation rate, values from

Tables 3.1 - 3.5.
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Figure 3.2  CALCULATED VENSUS MEASURED VENTILATION RATES
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Ventilation Rate per Unit Area of
Openings, CFM per square foot

LEGEND
% Data points from Model A

Data points from Model 8

e Data points from Model C
Data points from Model D
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Figure 3.3  INFLUENCE OF OPENING DISTRIBUTION ON VENTILATION
RATE PER UNIT OPENING AREA, WIND SPEED 210 FPM
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Ventilation Rate per Unit Area of
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Figure 3.4 INFLUENCE OF QPENING DISTRIBUTION ON VENTILATION
RATE PER UNIT OPENING AREA, WIND SPEED 410 FPM
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4

Ventilation Rate per Unit Area of Openings,

CFM per square foot

Figure 3.5

1 1 1 L !
' 7 .8

Ratio of Windward to Total Opening Area

INFLUENCE OF OPENING DISTRIBUTION ON VENTILATION
RATE PER UNIT OPENING AREA, WIND SPEED 600 FPM
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Ventilation Rate per Unit Area of
Openings, CFM per square foot
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1-0—1

.7

Ratio of Windward to Total Opening Area

Figure 3.6

INFLUENCE OF OPENING DISTRIBUTION ON VENTILATION
RATE PER UNIT OPENING AREA, WIND SPEED 825 FPM
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Model Ventilation Rate, CFM

Approach Wind Speed, MPH

Figure 3.11

VENTILATION RATE VERSUS APPROACH
WIND SPEED, SHELTER E
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obtained by correlating experimental data from all five shelter models. As
seen from Figure 3.2, the correlation is extremely good at the higher values of
the approach wind speed. However, the correlation is weak at the lowest value
of the approach wind speed tested. This is probably due to the inaccuracies in
the measurement of axial velocities in the calibration tubes at such low values
(less than 50 feet per minute).

Equation (1) is similar in form to Equation (12), Chapter 21 of
Reference 3. The latter equation which is reproduced below, gives ventilation
rates of buildings in general (residential, office, etc.).

Q = ExAxYV (Egn. 2)
where Q = Vantilation rate, CFM

z
"

Free area of inlet openings, square feet

-
[}

Wind velocity, feet per minute

m
[}

Effectiveness factor; 0.5 to 0.6 for perpendicular winds and 0.25
to 0.35 for diagonal winds.

For buildings with equal areas of windward and leeward openiﬁgs (for
which the factor F 1in Equation (1) equals unity), the constant of
proportionality in Equation (1) (equal td 0.31), agrees with that of Equation
(2) vor the .ase of diagenal winds. However, for perpendicular winds, values
given by Equation (2) are substantially larger (up to 100%). It may be now.
that Equation (1) was . developed for shelters with earih berms. The berms
probably aid ventilation when the approach wind is at an angle by acting as
flow deflectors. This, together with the fact that the distribution of
windward and 1eew$rd opening areas is often more favorable at diagonal winds
than at perpendicular winds, 1is probably the reason why shelter ventilation
rates at diagonal winds are often equal to or greater than those for

perpendicular winds.
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Use of Equation (2) for est1iat1ng building ventilation rates raises
some ambiguities. References 3 and 8 define the independent variable A as the
area of the 1inlet wall openings, whereas an earlfer edition of ASHRAE
Fundamentals (Ref. 9) defines it as the smaller of the inlet and outlet opening
areas. Further, when openings are present in walls parallel to the direction
of the approach wind, one is left guessing as to the proper value of this
variable. In Equation (1), the variable AH always denotes the total area of
the windward openings. The increment or decrement of flow due to unequal areas
of windward and leeward openings 1s accounted for by the factor F. For a
building with unequal areas of openings on opposite walls, Equation (2) gives
the same value of ventilation rate when the relative wind angle is changed by
180° . This was not found to be true for the shelter models studied. Equation
(1), in which values of the factor F are taken from two different curves
(Figures 3.l1a and 3.1b) depending on whether the ratio (A]/Aw) is greater
than or less than unity, is found to give better correlation with experimental
values. However, extrapolation of these curves beyond the ranges of the ratio
(A1/Aw) indicated in these figures is not recommended.

Figures 3.3 - 3.6 show that maximum values of ventilation rate per unit
area of wall openings are obtained when the windward opening area is about 50%
of the total. For all five models, the highest values of ventilation rate per
unit area of wall openings were obtained when the windward opening area was
between 30% and 60% of the total opening area. This observation was true for
all values of the approach wind speed tested. It may be inferred that if
openings are distr"ibuted over the walls such that the windward opening area is
between 30% and 60% of the total opening area at any value of the relative wind

angle, the ventilation rate per unit area of openings will not be very
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............

sensitive to the actual location and area of the individual openings. However,
the air distribution inside the shelter, which 1s not discussed in this report,
is 1ikely to depend upon the iocation and area of the individual openings.

1 The ratio of total wall opening area to floor area of the shelter models
in this study, varied from 3.1% to 4.3%. Ventilation rates for each of these
models (calculated from Equation (1)) and the projected values for the

! full-scale shelters are shown in Figures 3.7 - 3.11. Ventilation rates for the
entire range of relative wind angles (0° to 36(°) fall within the shaded area.
At any given speed of the approach wind, the range of variation in ventilation
rate due to changes in wind direction (relative wind angle) is given by the
vertical 1intercept within the shaded area. The horizontal broken 1ine in these
Figures corresponds to a ventilation rate of 1 cubic foot per minute per square
foot of floor area. This corresponds to 10 CFM per occupant at an occupant
density of 1 person per 10 square feet. It 1is seen that this rate of
ventilation can be achieved in all the shelter configurations studied at

C approach wind speeds as low as 3.5 mph.*

. :

The available ventilation rates may be somewhat less than those projected in
Figures 3.7 - 3.11 due to the additional resistance provided by the occupants.
Reference (2) gives an estimate of reductions 1in ventilation rates due to
occupants.
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Section 4

SUMMARY AND RECOMMENDATIONS

A linear relation that yields wind-induced vaontilation rates in bermed,
above-ground fallout shelters in terms of the approach wind speed, areas of
exterior wall openings and the ratio of windward to total opening area (which
depends on the direction of the approach wind) has been formulated from the
results of the model tests. This relation has the same form as that given in
the ASHRAE Handbook of Fundamentals (Ref. 3, 9, 10) for estimating wind
ventilation 1in general type buildings. However, there are considerable
differences 1in the values predicted by these two equations, especially for
perpendicular winds.

Models with five different opening configurations were used in the
present tests. Total opening areas of these models varied from 2.5% to 3.44%
of wall surface area (3.13% to 4.3% of floor area). Projected results show
that, for all five configurations, ventilation rates of 1 CFM per square foot
of floor area can be achieved at approach wird speeds as'low as 3.5 mph.

Test results also showed that the highest values of shelter ventilation
rate per unit area of wall openings are achieved when the ratio of windward to
total opening area lies between 0.3 and 0.6. If this ratio of opening areas

can be met at all wind directions (by proper distribution of openings over the

walls), 1t follows that the shelter will have the highest ventilation rates per

unit area of wall opénings for all wind directions.
The present study has established a means of estimating wind ventilation
in a bermed, one-room, above-ground shelter. The Option 1 study (Ref. 2)

provided estimates of wind ventilation that can be achieved in a one-room,
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below-ground shelter by the use of passive flow enhancement devices (FEDs).
That study also provided estimates of ventilation reductions due to the
presence of shelter occupants and also due to an upstream building. The next
step in the Shelter Ventilation Analysis Program should be to evaluate the
changes 1n ventilation rates that occur due to the presence of internal
partitions (multi-room shelters) 1in both above-ground and belbﬁ-ground
shel ters. The influence of internal partitions on shelter ventilation rate
will probably be difficult to quantify. However, with proper areas and
distributions of interior wall openings, reductions in ventilation rates might
become 1insignficant. Another important area where there ifs a lack of available
data relates to the reductions in ventilation rate for an above-ground shelter
due to adjacent buildings (flow obstacles) which shield the shelter on one or
more of 1its sides. Therefore, it is proposed that future work be directed
towards (1) establishing a means to estimate ventilatfon reductions in
above-ground and below-ground shelters due to internal partitions and setting
guidelines to mirnimize such reductions and (2) providing estimates of
ventilation reductions 1in bermed above-ground shelters due to buildings or
other sturctures shielding one or more of 1its sides and establishing the
minimum distances between the shelter and the neighboring buildings necessary

to minimize these ventilation reductions.
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